Cofficient estimates for a general Subclass of bi-univalent functions
Author(s) -
Khosrow Hosseinzadeh
Publication year - 2022
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.51659
Subject(s) - subclass , lambda , unit disk , mathematics , combinatorics , univalent function , unit (ring theory) , sigma , class (philosophy) , discrete mathematics , pure mathematics , computer science , analytic function , physics , artificial intelligence , mathematics education , quantum mechanics , antibody , optics , immunology , biology
In this paper, we introduce and investigate an interesting subclass ${\cal{S}}^{h,p}_{\Sigma}(A,B,C,\lambda)$ of bi-univalent functions in the open unit disk $\mathbb{U}$. Furthermore, we find estimates on the $|a_2|$ and $|a_3|$ coefficients for functions in this subclass. The coefficient bounds presented here generalize some recent works of several earlier authors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom