z-logo
open-access-imgOpen Access
Spectral properties of non- self-adjoint elliptic differential operators in the Hilbert space
Author(s) -
Reza Alizadeh,
Ali Sameripour
Publication year - 2022
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.51231
Subject(s) - omega , hilbert space , bounded function , domain (mathematical analysis) , elliptic operator , physics , differential operator , combinatorics , mathematics , boundary (topology) , space (punctuation) , mathematical physics , mathematical analysis , quantum mechanics , linguistics , philosophy
Let $\Omega$ be a bounded domain in $R^{n}$ with smooth boundary $\partial\Omega$. In this article, we will investigate the spectral properties of a non-self adjoint elliptic differential operator\\ $(Au)(x)=-\sum^{n}_{i,j=1}\left(\omega^{2\alpha}(x)a_{ij}(x) \mu(x)u'_{x_{i}}(x)\right)'_{x_{j}}$, acting in the Hilbert space $H=L^{2}{(\Omega)}$. with Dirichlet-type boundary conditions. Here $a_{ij}(x)= \overline{a_{ji}(x)}\;\;\;(i,j=1,\ldots,n),\;\;\; a_{ij}(x)\in C^{2}(\overline{\Omega})$, and the functions $a_{ij}(x)$ satisfies the uniformly elliptic condition, and let $ 0 \leq \alpha < 1$. Furthermore, for $\forall x \in \overline{\Omega}$, the function $\mu(x)$ lie in the $\psi_{\theta_1\theta_2}$ , where ${\psi_{\theta_1\theta_2}}=\{z \in {\bf C}:\;\pi/2<\theta_1 \leq|arg\;z| \leq \theta_2<\pi\},$

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom