z-logo
open-access-imgOpen Access
Densely generated 2D q-Appell polynomials of Bessel type and q-addition formulas
Author(s) -
Mumtaz Riyasat
Publication year - 2022
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.46923
Subject(s) - mathematics , bessel function , type (biology) , bessel polynomials , convolution (computer science) , pure mathematics , difference polynomials , wilson polynomials , orthogonal polynomials , discrete orthogonal polynomials , algebra over a field , mathematical analysis , computer science , ecology , machine learning , artificial neural network , biology
The article aims to introduce a densely generated class of $2D$ $q$-Appell polynomials of Bessel type via generating equation and to establish its $q$-determinant form. It is advantageous to consider the $2D$ $q$-Bernoulli, $2D$ $q$-Roger Szeg\"{o} and $2D$ $q$-Al-Salam Carlitz polynomials of Bessel type as their special members. The $q$-determinant forms and certain $q$-addition formulas are derived for these polynomials. The article concludes with a brief view on discrete $q$-Bessel convolution of the $2D$ $q$-Appell polynomials.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom