z-logo
open-access-imgOpen Access
A note on constructing and enumerating of magic squares
Author(s) -
Mohammad Reza Oboudi
Publication year - 2022
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.46836
Subject(s) - magic square , diagonal , combinatorics , integer (computer science) , magic (telescope) , mathematics , order (exchange) , square (algebra) , column (typography) , discrete mathematics , arithmetic , computer science , physics , geometry , quantum mechanics , finance , connection (principal bundle) , economics , programming language
Let $n\geq1$ be an integer. A magic square of order $n$ is a square table $n\times n$, say $A$, filled with distinct positive numbers $1,2,\ldots,n^2$ such that all cells of $A$ are distinct and the sum of the numbers in each row, column and diagonal is equal.Let $M(n,s)$ be the set of all $n\times n$ $(0,1)$-matrices, say $T$, such that the number of $1$ in every row and every column of $T$ is $s$.In this paper for every positive integer $k$ we find a new way for constructing magic squares of order $4k$. We show that the number of magic squares of order $4k$ is at least $|M(2k,k)|$. In particular we show that the number of magic squares of order $4k$ is at least $\frac{{2k \choose k}^2}{2}$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom