Three nontrivial solutions of boundary value problems for semilinear $\Delta_{\gamma}-$Laplace equation
Author(s) -
Duong Trong Luyen,
Le Thi Hong Hanh
Publication year - 2021
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.45841
Subject(s) - domain (mathematical analysis) , boundary (topology) , bounded function , omega , laplace's equation , boundary value problem , operator (biology) , mathematics , combinatorics , mathematical analysis , mathematical physics , physics , quantum mechanics , biochemistry , chemistry , repressor , transcription factor , gene
In this paper, we study the existence of multiple solutions for the boundary value problem\begin{equation}\Delta_{\gamma} u+f(x,u)=0 \quad \mbox{ in } \Omega, \quad \quad u=0 \quad \mbox{ on } \partial \Omega, \notag\end{equation}where $\Omega$ is a bounded domain with smooth boundary in $\mathbb{R}^N \ (N \ge 2)$ and $\Delta_{\gamma}$ is the subelliptic operator of the type $$\Delta_\gamma: =\sum\limits_{j=1}^{N}\partial_{x_j} \left(\gamma_j^2 \partial_{x_j} \right), \ \partial_{x_j}=\frac{\partial }{\partial x_{j}}, \gamma = (\gamma_1, \gamma_2, ..., \gamma_N), $$the nonlinearity $f(x , \xi)$ is subcritical growth and may be not satisfy the Ambrosetti-Rabinowitz (AR) condition. We establish the existence of three nontrivial solutions by using Morse theory.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom