z-logo
open-access-imgOpen Access
Existence of a renormalized solution of nonlinear parabolic equations with general measure data
Author(s) -
Amine Marah,
Hicham Redwane
Publication year - 2021
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.45243
Subject(s) - nabla symbol , omega , measure (data warehouse) , type (biology) , function (biology) , nonlinear system , operator (biology) , mathematics , parabolic partial differential equation , pure mathematics , mathematical physics , combinatorics , mathematical analysis , physics , partial differential equation , chemistry , quantum mechanics , computer science , ecology , biochemistry , repressor , database , evolutionary biology , transcription factor , gene , biology
In this paper we prove the existence of a renormalized solution for nonlinear parabolic equations of the type:$$\displaystyle{\partial b(x,u)\over\partial t} - {\rm div}\Big(a(x,t,\nabla u)\Big)=\mu\qquad \text{in}\ \Omega\times (0,T),$$ where the right handside is a general measure, $b(x,u)$ is anunbounded function of $u$ and $- {\rm div}(a(x,t,\nabla u))$is a Leray--Lions type operator with growth $|\nabla u|^{p-1}$ in$\nabla u$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom