z-logo
open-access-imgOpen Access
The equality of Hochschild cohomology group and module cohomology group for semigroup algebras
Author(s) -
Ebrahim Nasrabadi
Publication year - 2021
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.44931
Subject(s) - mathematics , semigroup , cohomology , group (periodic table) , idempotence , commutative property , group cohomology , inverse , pure mathematics , combinatorics , discrete mathematics , algebra over a field , physics , geometry , quantum mechanics
‎Let $S$ be a commutative inverse semigroup with idempotent set $E$‎. ‎In this paper‎, ‎we show that for every $n\in \mathbb{N}_0$‎, ‎$n$-th Hochschild cohomology group of semigroup algebra $\ell^1(S)$ with coefficients in $\ell^\infty(S)$ and its $n$-th $\ell^1(E)$-module cohomology group‎, ‎are equal‎. ‎Indeed‎, ‎we prove that‎ ‎\[ \HH^{n}(\ell^1(S),\ell^\infty(S))=\HH^{n}_{\ell^1(E)}(\ell^1(S),\ell^\infty(S)),\] for all $n\geq 0$‎.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom