z-logo
open-access-imgOpen Access
(Jordan) derivation on amalgamated duplication of a ring along an ideal
Author(s) -
Khalid Louartiti,
Abdellah Mamouni,
Mohammed Tamekkante
Publication year - 2021
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.42803
Subject(s) - subring , semiprime , noncommutative geometry , mathematics , ideal (ethics) , semiprime ring , prime (order theory) , ring (chemistry) , minimal ideal , pure mathematics , noncommutative ring , discrete mathematics , combinatorics , maximal ideal , philosophy , chemistry , organic chemistry , epistemology
Let A be a ring and I be an ideal of A. The amalgamated duplication of A along I is the subring of A × A dened by $A\bowtie I := {(a, a + i) |a ∈ A, i ∈ I}$.  In this paper, we characterize $A\bowtie I$  over which any (resp. minimal)  prime  ideal  is  invariant  under  any  derivation  provided  that  A  is semiprime.  When A is noncommutative prime, then $A\bowtie I$  is noncommutative semiprime (but not prime except if I = (0)).  In this case, we prove that any map of $A\bowtie I$   which is both Jordan and Jordan triple derivation is a derivation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom