z-logo
open-access-imgOpen Access
Existence results for nonlinear problems with $\varphi$- Laplacian operators and nonlocal boundary conditions
Author(s) -
Dionicio Pastor Dallos Santos
Publication year - 2021
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.41594
Subject(s) - homeomorphism (graph theory) , degree (music) , mathematics , combinatorics , function (biology) , boundary (topology) , boundary value problem , zero (linguistics) , type (biology) , nonlinear system , pure mathematics , mathematical analysis , physics , quantum mechanics , linguistics , philosophy , evolutionary biology , acoustics , biology , ecology
Using Leray-Schauder degree theory we study the existence of at least one solution for the boundary value problem of the type\[\left\{\begin{array}{lll}(\varphi(u' ))' = f(t,u,u') & & \\u'(0)=u(0), \ u'(T)= bu'(0), & & \quad \quad \end{array}\right.\] where $\varphi: \mathbb{R}\rightarrow \mathbb{R}$ is a homeomorphism such that $\varphi(0)=0$, $f:\left[0, T\right]\times \mathbb{R} \times \mathbb{R}\rightarrow \mathbb{R} $ is a continuous function, $T$ a positive real number, and $b$ some non zero real number.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom