z-logo
open-access-imgOpen Access
On δ- Lorentzian trans Sasakian manifold with semi-symmetric metric connection
Author(s) -
Mohd Danish Siddiqi
Publication year - 2020
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.41108
Subject(s) - connection (principal bundle) , metric connection , scalar curvature , curvature , manifold (fluid mechanics) , metric (unit) , pure mathematics , mathematics , ricci curvature , mathematical analysis , riemann curvature tensor , levi civita connection , pseudo riemannian manifold , fundamental theorem of riemannian geometry , geometry , mechanical engineering , operations management , engineering , economics
The aim of the present research is to study the δ-Lorentzian trans Sasakian manifolds with a semi-symmetric metric connection. We have found the expressions for curvature tensors, Ricci curvature tensors and scalar curvature of the δ-Lorentzian trans Sasakian manifolds with a semi-symmetric metric and metric connection. Also, we have discussed some results on quasi-projectively flat and ϕ-projectively flat manifolds endowed with a semi-symmetric-metric connection. It shown that the manifold satisfying¯R. ¯ S = 0,¯P, ¯ S = 0.Lastly, we have obtained the conditions for the δ-Lorentzian Trans Sasakian manifolds with a semi-symmetric metric connection to be conformally flat and ξ-conformally flat.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom