z-logo
open-access-imgOpen Access
On composition operators of Fibonacci matrix and applications of Hausdorff measure of noncompactness
Author(s) -
Bipan Hazarika,
Anupam Das,
Emrah Evren Kara,
Feyzı Başar
Publication year - 2021
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.39960
Subject(s) - hausdorff space , lambda , mathematics , combinatorics , banach space , measure (data warehouse) , space (punctuation) , matrix (chemical analysis) , dual polyhedron , fibonacci number , type (biology) , hausdorff measure , discrete mathematics , hausdorff dimension , physics , materials science , ecology , linguistics , philosophy , database , computer science , optics , composite material , biology
The aim of the paper is introduced the composition of the two infinite matrices $\Lambda=(\lambda_{nk})$ and $\widehat{F}=\left( f_{nk} \right).$ Further, we determine the $\alpha$-, $\beta$-, $\gamma$-duals of new spaces and also construct the basis for the space $\ell_{p}^{\lambda}(\widehat{F}).$ Additionally, we characterize some matrix classes on the spaces $\ell_{\infty}^{\lambda}(\widehat{F})$ and $\ell_{p}^{\lambda}(\widehat{F}).$ We also investigate some geometric properties concerning Banach-Saks type $p.$Finally we characterize the subclasses $\mathcal{K}(X:Y)$ of compact operators by applying the Hausdorff measure of noncompactness, where $X\in\{\ell_{\infty}^{\lambda}(\widehat{F}),\ell_{p}^{\lambda}(\widehat{F})\}$ and $Y\in\{c_{0},c, \ell_{\infty}, \ell_{1}, bv\},$ and $1\leq p<\infty.$

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom