
Minimizing total tardiness for the order scheduling problem with sequence-dependent setup times using hybrid matheuristics
Author(s) -
Massimo Pinto Antonioli,
Carlos Diego Rodrigues,
Bruno de Athayde Prata
Publication year - 2022
Publication title -
international journal of industrial engineering computations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.564
H-Index - 26
eISSN - 1923-2926
pISSN - 1923-2934
DOI - 10.5267/j.ijiec.2021.11.002
Subject(s) - tardiness , computer science , scheduling (production processes) , mathematical optimization , integer programming , due date , job shop scheduling , algorithm , mathematics , schedule , operating system
This paper aims at presenting a customer order scheduling environment in which the setup times are explicit and depend on the production sequence. The considered objective function is the total tardiness minimization. Since the variant under study is NP-hard, we propose a mixed-integer linear programming (MILP) model, an adaptation of the Order-Scheduling Modified Due-Date heuristic (OMDD) (referred to as Order-Scheduling Modified Due-Date Setup (OMMD-S)), an adaptation of the Framinan and Perez-Gonzalez heuristic (FP) (hereinafter referred to as Framinan and Perez-Gonzalez Setup (FP-S)), a matheuristic with Same Permutation in All Machines (SPAM), and the hybrid matheuristic SPAM-SJPO based on Job-Position Oscillation (JPO). The algorithms under comparison have been compared on an extensive benchmark of randomly generated test instances, considering two performance measures: Relative Deviation Index (RDI) and Success Rate (SR). For the small-size evaluated instances, the SPAM is the most efficient algorithm, presenting the better values of RDI and SR. For the large-size evaluated instances, the hybrid matheuristic SPAM-JPO and MILP model are the most efficient methods.