
Material modelling of FDM printed PLA part
Author(s) -
Oleg Volgin,
Igor Shishkovsky
Publication year - 2021
Publication title -
engineering solid mechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.528
H-Index - 17
eISSN - 2291-8752
pISSN - 2291-8744
DOI - 10.5267/j.esm.2020.12.004
Subject(s) - digital image correlation , viscoplasticity , materials science , thermoplastic , composite material , finite element method , fused deposition modeling , deformation (meteorology) , softening , work (physics) , constitutive equation , 3d printing , structural engineering , mechanical engineering , engineering
This paper focuses on modelling inelasticity of additively manufactured polylactide (PLA) thermoplastic using Fused Deposition Modelling (FDM) printing technology. The material response of PLA is viscoplastic and temperature-dependent, as is typically seen for thermoplastics. The inelastic deformation of printed PLA undergoes initial yielding, strain softening, and subsequent failure. The Three-Network (TN) constitutive model was employed in this work, which captures experimentally observed material response and consists of three molecular equilibrium and time-dependent viscous networks that act in parallel. The parameter identification was performed in accordance with experimental data from uniaxial testing and a validation experiment was carried out by loading plate with a hole and measuring its strain distribution using Digital Image Correlation (DIC) method, which was compared with the predictions from Finite Element Analysis (FEA).