z-logo
open-access-imgOpen Access
An application of data mining classification and bi-level programming for optimal credit allocation
Author(s) -
Seyed Mahdi Sadatrasou,
Mohammad Reza Gholamian,
Kamran Shahanaghi
Publication year - 2015
Publication title -
decision science letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.384
H-Index - 18
eISSN - 1929-5804
pISSN - 1929-5812
DOI - 10.5267/j.dsl.2014.9.005
Subject(s) - computer science , data mining , operations research , mathematical optimization , engineering , mathematics
This paper investigates credit allocation policy making and its effect on economic development using bi-level programming. There are two challenging problems in bi-level credit allocation; at the first level government/public related institutes must allocate the credit strategically concerning sustainable development to regions and industrial sectors. At the second level, there are agent banks, which should allocate the credit tactically to individual applicants based on their own profitability and risk using their credit scoring models. There is a conflict of interest between these two stakeholders but the cooperation is inevitable. In this paper, a new bi-level programming formulation of the leader-follower game in association with sustainable development theory in the first level and data mining classifier at the second level is used to mathematically model the problem. The model is applied to a national development fund (NDF) as a government related organization and one of its agent banks. A new algorithm called Bi-level Genetic fuzzy apriori Algorithm (BGFAA) is introduced to solve the bilateral model. Experimental results are presented and compared with a unilateral policy making scenario by the leader. Findings show that although the objective functions of the leader are worse in the bilateral scenario but agent banks collaboration is attracted and guaranteed

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here