z-logo
open-access-imgOpen Access
Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm
Author(s) -
Kenneth Maiese
Publication year - 2021
Publication title -
frontiers in bioscience-landmark
Language(s) - English
Resource type - Journals
eISSN - 2768-6701
pISSN - 2768-6698
DOI - 10.52586/4971
Subject(s) - circadian rhythm , wnt signaling pathway , neuroscience , biology , circadian clock , neurodegeneration , dementia , pi3k/akt/mtor pathway , bioinformatics , medicine , signal transduction , microbiology and biotechnology , disease
: Dementia and cognitive loss impact a significant proportion of the global population and present almost insurmountable challenges for treatment since they stem from multifactorial etiologies. Innovative avenues for treatment are highly warranted. Methods and results : Novel work with biological clock genes that oversee circadian rhythm may meet this critical need by focusing upon the pathways of the mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1 ( Saccharomyces cerevisiae ) (SIRT1), mammalian forkhead transcription factors (FoxOs), the growth factor erythropoietin (EPO), and the wingless Wnt pathway. These pathways are complex in nature, intimately associated with autophagy that can maintain circadian rhythm, and have an intricate relationship that can lead to beneficial outcomes that may offer neuroprotection, metabolic homeostasis, and prevention of cognitive loss. However, biological clocks and alterations in circadian rhythm also have the potential to lead to devastating effects involving tumorigenesis in conjunction with pathways involving Wnt that oversee angiogenesis and stem cell proliferation. Conclusions : Current work with biological clocks and circadian rhythm pathways provide exciting possibilities for the treating dementia and cognitive loss, but also provide powerful arguments to further comprehend the intimate and complex relationship among these pathways to fully potentiate desired clinical outcomes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom