
PERBANDINGAN TINGKAT AKURASI METODE KNN DAN DECISION TREE DALAM MEMPREDIKSI LAMA STUDI MAHASISWA
Author(s) -
Endang Etriyanti
Publication year - 2021
Publication title -
jurnal ilmiah binary stmik bina nusantara jaya
Language(s) - English
Resource type - Journals
eISSN - 2657-2117
pISSN - 2339-1138
DOI - 10.52303/jb.v3i1.40
Subject(s) - humanities , art
Kualitas lulusan dari sebuah Perguruan Tinggi salah satunya dapat dilihat dari lama studi mahasiswa. Selain itu lama studi mahasiswa menggambarkan tingkat capaian mahasiswa dalam pendidikannya. Lama studi juga sangat berpengaruh pada kualitas program studi karena lama studi mahasiswa merupakan salah satu kriteria penilaian akreditasi. Seringkali masalah yang dihadapi oleh suatu Perguruan Tinggi adalah banyaknya mahasiswa yang menyelesaikan pendidikannya lebih dari jangka waktu yang ditetapkan. STMIK Bina Nusantara Jaya Lubuklinggau juga mengalami hal tersebut. Untuk mengantisipasi hal tersebut perlu adanya prediksi lama studi mahasiswa karena lama studi mahasiswa menjadi salah satu hal yang penting yang perlu diperhatikan bagian program studi dalam suatu Perguruan Tinggi. Penelitian ini berkontribusi secara teoretis dalam implementasi data mining untuk memprediksi lama studi mahasiswa.Penelitian ini menerapkan preprocessing data untuk memperoleh data dengan kualitas baik sebelum dilakukan proses mining menggunakan metode K-Nearest Neighbor dan Decision Tree pada Tools RapidMiner, kedua metode divalidasi menggunakan K-Fold Cross Validation (dengan 10 kali iterasi/pengulangan) dan Confusion Matrix digunakan untuk memvalidasi nilai akurasi hasil prediksi. Nilai akurasi yang paling tinggi dari hasil penerapan kedua metode akan direkomendasikan untuk menyelesaikan masalah prediksi lama studi mahasiswa. Dari hasil penelitian diperoleh nilai akurasi metode Decision Tree (60,38%) lebih baik jika dibandingkan dengan nilai akurasi metode K-Nearest Neighbor (53,08%).