
MHD CASSON NANOFLUID FLOW OVER A STRETCHING SURFACE EMBEDDED IN A POROUS MEDIUM: EFFECTS OF THERMAL RADIATION AND SLIP CONDITIONS
Author(s) -
Sameh E. Ahmed,
R. A. Mohamed,
Akhtar Ali,
Ali J. Chamkha,
Mahmoud S. Soliman
Publication year - 2021
Publication title -
latin american applied research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.123
H-Index - 23
eISSN - 1851-8796
pISSN - 0327-0793
DOI - 10.52292/j.laar.2021.523
Subject(s) - nanofluid , nusselt number , thermophoresis , thermal radiation , materials science , magnetohydrodynamic drive , mechanics , magnetohydrodynamics , porous medium , thermodynamics , heat transfer , magnetic field , porosity , turbulence , physics , composite material , reynolds number , quantum mechanics
This article presents a numerical study for a magnetohydrodynamic flow of a non-Newtonian Casson nanofluid over a stretching sheet embedded in a porous medium under the impacts of non-linear thermal radiation, heat generation/absorption, Joule heating and slips boundary conditions. A two-phase nanofluid model is applied to represent the nanofluid mixture. The porous medium is represented via the Darcy model. A similar solution is obtained for the governing equations and a numerical treatment based on the Runge-Kutta method is conducted to the resulting system of equations. In this study, the controlling physical parameters are the Casson fluid parameter , the magnetic field , the radiation parameter , the Brownian motion parameter and the thermophoresis parameter . The obtained results reveal that an increase in the Casson parameter enhances both of the local Nusselt and the Sherwood number while they are reduced as the non-linear radiation parameter increases. In addition, an increase in the magnetic field parameter supports the skin friction coefficient regardless the value of the Casson parameter.