
NUMERICAL STUDY ON AERODYNAMIC CHARACTERISTICS OF BUNDLE CONDUCTOR FOR UHV BASED ON ALE METHOD
Author(s) -
Jiajun Si,
Kun Yan Zhu
Publication year - 2014
Publication title -
latin american applied research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.123
H-Index - 23
eISSN - 1851-8796
pISSN - 0327-0793
DOI - 10.52292/j.laar.2014.447
Subject(s) - mechanics , aerodynamics , bundle , wind tunnel , vortex shedding , conductor , reynolds number , physics , structural engineering , engineering , mathematics , geometry , materials science , turbulence , composite material
The bundle conductor is often threatened by the wind-excited or wake-induced vibration generated by vortex shedding. So as to simulate the common fluid–structure nonlinear interaction problems in Ultra-High Voltage (UHV) transmission lines, the N-S equations of incompressible viscous fluid with the ALE description has been adopted to formulate the fluid-solid governing equations in the analogue computation and the 2-bundle and 6bundle sectional models, as well as the deduced finite element discretization scheme of conductor displacement are introduced in the algorithm. Wind tunnel experimental studies are carried out based on the single stranded model, 6-bundle stranded and 6bundle circle model for the focus of aerodynamic characteristics and the difference between stranded cable and circle cable. Results show that solution of numerical model agrees favorably with experimental results. The aerodynamic coefficients decrease significantly within the expected critical range of wind speed or Reynolds numbers and the cables roughness is not the principle factor to the aerodynamic coefficient when the Reynolds numbers belong to the critical region. However, the interference effect of the bundle conductor widely influenced the wind load applied on the surface of each cable.