z-logo
open-access-imgOpen Access
Prediction of melting time of complex ferroalloys by physical and chemical modeling
Author(s) -
А. Ф. Петров,
I.R. Snihura,
L. A. Golovko,
N.A. Tsyupa
Publication year - 2019
Publication title -
fundamentalʹnye i prikladnye problemy černoj metallurgii/fundamental and applied problems of ferrous metallurgy
Language(s) - English
Resource type - Journals
eISSN - 2786-6149
pISSN - 2522-9117
DOI - 10.52150/2522-9117-2019-33-205-214
Subject(s) - ferroalloy , ferrous metallurgy , steelmaking , materials science , refining (metallurgy) , homogeneity (statistics) , work (physics) , dissolution , metallurgy , thermodynamics , computer science , chemistry , physics , machine learning
The purpose of this work is to implement a new approach to the description of the duration of melting (dissolution) of complex new generation ferroalloys during the deoxidation and doping of a metal melt. This approach is aimed at developing a methodology and criteria for the quantification and accounting of the micro-heterogeneity of multicomponent metal melts and their prediction on such important for steelmaking production characteristics as the melting time of ferroalloys, the description of the inter-mine interaction, which allows a deeper understanding of the process. deoxidation and refining of steel. In the work, the approach developed in the Institute of Ferrous Metallurgy of the National Academy of Sciences of Ukraine to solve problems of modeling of non-conformities that relate the composition, structure and properties of melts is used in the work. It is based on the original concept of physicochemical modeling of the processes of interatomic interaction in melts and solutions, developed by E.V. Prihodko. According to it, metal melts are considered as chemically unified systems. Changing their composition affects the complex of physicochemical properties due to changes in the parameters of their electronic structure. The method of calculation of criteria (∆Zy and d), characterizing the degree of difference between the electronic and structural state of the melt, as a chemically unified system, from the mechanical mixture of their initial components and the parameter was used to evaluate and account for the influence of the micron homogeneity of the structure of the metal melts of ferroalloy production. ρl, which takes into account the cluster spin in metal melts.Using these criteria and the available experimental data, analytical dependences were obtained to calculate the melting time of complex (ma-manganese, vanadium, niobium and boromatic) ferroalloys of the new generation. This will allow them to evaluate their effectiveness of application, which is associated with the highest assimilation of the main elements that affect

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here