
Dengue Cases Prediction Using Machine Learning Approach
Author(s) -
Aima Aziz,
Azka Aziz
Publication year - 2021
Publication title -
irasd journal of computer science and information technology
Language(s) - English
Resource type - Journals
eISSN - 2791-0628
pISSN - 2791-061X
DOI - 10.52131/jcsit.2021.0201.0007
Subject(s) - dengue fever , machine learning , artificial intelligence , outbreak , computer science , medicine , virology
Dengue fever, spread by mosquitoes, affects about 3.9 billion people worldwide. Health officials could use indicators of dengue fever outbreaks to start taking preventative measures. Controlling dengue fever may be more straightforward for local authorities if they have timely and accurate disease forecasts. As one of the most rapidly spreading diseases globally, dengue fever is a threat to everyone. Dengue outbreaks can be predicted using machine learning, according to this study. Dengue prediction models could benefit from nature-based algorithms being boosted or used. The only thing that mattered in the prediction and training model was the week of the year, which was the only thing that signified. A standard machine learning algorithm cannot simulate long-term dependencies in time-series data, which is necessary for accurate projections in Dengue fever cases. When it comes to developing risk criteria for severe Dengue, machine learning could be a valuable implement in determining the possible behavior to formulate.