
A Symmetrization Result for Nonlinear Elliptic Equations
Author(s) -
Vincenzo Ferone,
Basilio Messano
Publication year - 2004
Publication title -
revista matemática complutense
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.093
H-Index - 24
eISSN - 1696-8220
pISSN - 1139-1138
DOI - 10.5209/rev_rema.2004.v17.n2.16718
Subject(s) - mathematics , symmetrization , nonlinear system , homogeneous , elliptic operator , principal part , semi elliptic operator , class (philosophy) , mathematical analysis , term (time) , operator (biology) , principal (computer security) , pure mathematics , elliptic curve , dirichlet distribution , dirichlet problem , boundary value problem , combinatorics , differential operator , biochemistry , chemistry , physics , repressor , quantum mechanics , artificial intelligence , computer science , transcription factor , gene , operating system
We consider a solution u of the homogeneous Dirichlet problem for a class of nonlinear elliptic equations in the form A(u) = g(x, u) + f, where the principal term is a Leray-Lions operator defined onW1,p