
Optimization of Performance Parameters in Drilling Process for Minimizing the Burr Formation
Author(s) -
Jatinder Singh,
Kulvinder Garg
Publication year - 2018
Publication title -
asian journal of engineering and applied technology
Language(s) - English
Resource type - Journals
ISSN - 2249-068X
DOI - 10.51983/ajeat-2018.7.2.902
Subject(s) - taguchi methods , drilling , surface roughness , orthogonal array , machining , mechanical engineering , drill , process (computing) , engineering , engineering drawing , materials science , computer science , composite material , operating system
Presently a-days precision manufacturing has picked up its significance in all assembling industries. The best product dimensions at low cost with minimum time become a measure of concern. The drilling process imparts more than 30% of all the metal removing operations done on a job or assembly. The burr is a plastically deformed material, generated during drilling is unnecessary output and reduces the product acceptability, often lowers the surface quality of the product requires deburring which increases the cost of product. Burr is caused due to improper machining, tooling and environmental parameters. Total elimination of burrs during drilling process is a difficult task but using proper process parameters it can be minimized. In the present experimental study, the optimization of process parameters for minimization of burr formation in drilling process has been carried out for Al6082 plate. The tool type (coated/uncoated), spindle speed, feed rate, and drill diameters were used as the process parameters. Taguchi’s L18 orthogonal has been applied for DOE and drilling of Al6082 plates has been performed using ply-board as a backup support and without using any backup support on CNC drilling machine. The burr height and surface roughness were analyzed and optimized using S/N ratio and ANOVA and the optimum combinations for burr height and surface roughness has been found from S/N plots. The most influencing factors for burr height and surface roughness have been found from ANOVA tables.