z-logo
open-access-imgOpen Access
Developing a Fall Detection Technology for Mobility and System Level
Author(s) -
S. Divya
Publication year - 2019
Publication title -
asian journal of computer science and technology
Language(s) - English
Resource type - Journals
eISSN - 2583-7907
pISSN - 2249-0701
DOI - 10.51983/ajcst-2019.8.s2.2034
Subject(s) - accelerometer , computer science , mobile phone , real time computing , android (operating system) , phone , sitting , fall prevention , embedded system , smart phone , power consumption , computer security , simulation , artificial intelligence , poison control , telecommunications , injury prevention , operating system , medical emergency , medicine , philosophy , linguistics , pathology , power (physics) , physics , quantum mechanics
Smartphone’s are programmable and embed various sensors; these phones have the potential to change the way how healthcare is delivered. Fall detection is definitely one of the possibilities. Injuries due to falls are dangerous, especially for elderly people, diminishing the quality of life or even resulting in death. This study presents the implementation of a fall detection prototype for the Android-based platform. The proposed system has three components: sensing the accelerometer data from the mobile embedded sensors, learning the relationship between the fall behavior and the collected data, and alerting preconfigured contacts through message while detecting fall. We adopt different fall detection algorithms and conduct various experiments to evaluate performance. The results show that the proposed system can recognize the fall from human activities, such as sitting, walking and standing, with 72.22% sensitivity and 73.78% specificity. The experiment also investigates the impact of different locations where the phone attached. In addition, this study further analyzes the trade-off between sensitivity and specificity and discusses the additional powers consumption of the devices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom