
Study and Analysis of Data Mining Algorithms for Identifying the Students’ for Psychology Motivation
Author(s) -
S. Peerbasha,
M. Mohamed Surputheen
Publication year - 2019
Publication title -
asian journal of computer science and technology
Language(s) - English
Resource type - Journals
eISSN - 2583-7907
pISSN - 2249-0701
DOI - 10.51983/ajcst-2019.8.s2.2018
Subject(s) - cluster analysis , computer science , machine learning , process (computing) , artificial intelligence , perspective (graphical) , set (abstract data type) , data mining , programming language , operating system
The development of many educational institutions is based on the performance of students learning and understanding capabilities. Here, we analyzed their academic profile with their grades and various cumulative attributes. The academic performance in learning their subjects could be improved by motivational approach. The analysis of student performance is carried out through knowledge-based data mining process. But, the problem is arrived by a probability of information prediction accuracy from student data set which is not accurate. Here, we propose a novel machine learning algorithm based on subspace clustering and multi-perspective classification techniques to identify psychological motivation required students. Also, the extraction of relational patterns to form enhanced clustering classes is done. This discovers the innovative relations between students and their educational performance in the various attributes using surf scale nested clustering approach based on an intelligent predicting system from soft computing processing tasks. This improves the data prediction rate by considering the time factor analysis and complexity to design and develop an efficient clustering algorithm which maximizes the clustering and classification accuracy for improving academic performance.