z-logo
open-access-imgOpen Access
Improved Heart Disease Prediction Using Deep Neural Network
Author(s) -
Mohammad Ashraf,
M. A. Rizv,
Himanshu Sharma
Publication year - 2019
Publication title -
asian journal of computer science and technology
Language(s) - English
Resource type - Journals
eISSN - 2583-7907
pISSN - 2249-0701
DOI - 10.51983/ajcst-2019.8.2.2141
Subject(s) - computer science , machine learning , artificial intelligence , key (lock) , set (abstract data type) , artificial neural network , data set , heart disease , data mining , data science , computer security , medicine , cardiology , programming language
Heart disease is biggest challenge for medical professionals. Modern life style made it an epidemic; according to a survey conducted by WHO heart attack is leading cause of death all over the world especially in the western world. It is surveyed that 23% of the death in US is due to Heart related disease [1]. It has been observed assistance is needed for helping medical professionals in detecting the chance of heart attack in the human. In recent times a lot of work related to providing an automated support system for predicting chance of Heart attack in human has been done. After advancement of computer science, researchers felt that they can help in some of the key interdisciplinary areas like medical science. Machine learning techniques are compared on the single data set which does not reflect true potential of any algorithms. They also suffer from some of the key anomalies such as accuracy and manual data set pre-processing. In this paper, we propose Deep Neural Network methods for creating an automated system for heart attack prediction. It is tested on multiple dataset to find out true potential and providing certainty in the accuracy. Method also promises to remove all the mentioned anomalies from the system like lack of accuracy and automated approach in pre- processing of the data set. In result analysis, it has been observed that prediction is much more efficient and minimum accuracy achieved through this proposed method is 87.64% on any of the data set taken under consideration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here