
REMOTELY-SENSED URBAN WET-LANDSCAPES: AN INDICATOR OF COUPLED EFFECTS OF HUMAN IMPACT AND CLIMATE CHANGE
Author(s) -
Wei Ji
Publication year - 2016
Publication title -
the international archives of the photogrammetry, remote sensing and spatial information sciences/international archives of the photogrammetry, remote sensing and spatial information sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 71
eISSN - 1682-1777
pISSN - 1682-1750
DOI - 10.5194/isprsarchives-xli-b8-915-2016
Subject(s) - wetland , impervious surface , watershed , metropolitan area , climate change , environmental science , physical geography , precipitation , geography , hydrology (agriculture) , satellite imagery , urban climate , environmental resource management , urban planning , remote sensing , ecology , meteorology , geology , geotechnical engineering , archaeology , machine learning , computer science , biology
This study proposes the concept of urban wet-landscapes (loosely-defined wetlands) as against dry-landscapes (mainly impervious surfaces). The study is to examine whether the dynamics of urban wet-landscapes is a sensitive indicator of the coupled effects of the two major driving forces of urban landscape change – human built-up impact and climate (precipitation) variation. Using a series of satellite images, the study was conducted in the Kansas City metropolitan area of the United States. A rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. The spatial analyses of wetland changes were implemented at the scales of metropolitan, watershed, and sub-watershed as well as based on the size of surface water bodies in order to reveal urban wetland change trends in relation to the driving forces. The study identified that wet-landscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while smaller wetlands decreased mainly due to human development activities. These findings suggest that wet-landscapes, as against the dry-landscapes, can be a more effective indicator of the coupled effects of human impact and climate change.