
AN ORIGINAL PROCESSING METHOD OF SATELLITE ALTIMETRY FOR ESTIMATING WATER LEVELS AND VOLUME FLUCTUATIONS IN A SERIES OF SMALL LAKES OF THE PANTANAL WETLAND COMPLEX IN BRAZIL
Author(s) -
Paulo Henrique da Silva Costa,
Eric Oliveira Pereira,
Philippe Maillard
Publication year - 2016
Publication title -
the international archives of the photogrammetry, remote sensing and spatial information sciences/international archives of the photogrammetry, remote sensing and spatial information sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 71
eISSN - 1682-1777
pISSN - 1682-1750
DOI - 10.5194/isprsarchives-xli-b8-327-2016
Subject(s) - altimeter , water level , wetland , satellite , environmental science , surface water , satellite altimetry , elevation (ballistics) , remote sensing , series (stratigraphy) , hydrology (agriculture) , volume (thermodynamics) , meteorology , geography , geology , mathematics , cartography , engineering , ecology , paleontology , geometry , geotechnical engineering , quantum mechanics , physics , aerospace engineering , environmental engineering , biology
Satellite altimetry is becoming a major tool for measuring water levels in rivers and lakes offering accuracies compatible with many hydrological applications, especially in uninhabited regions of difficult access. The Pantanal is considered the largest tropical wetland in the world and the sparsity of <i>in situ</i> gauging station make remote methods of water level measurements an attractive alternative. This article describes how satellites altimetry data from Envisat and Saral was used to determine water level in two small lakes in the Pantanal. By combining the water level with the water surface area extracted from satellite imagery, water volume fluctuations were also estimated for a few periods. The available algorithms (retrackers) that compute a range solution from the raw waveforms do not always produce reliable measurements in small lakes. This is because the return signal gets often “contaminated” by the surrounding land. To try to solve this, we created a “lake” retracker that rejects waveforms that cannot be attributed to “calm water” and convert them to altitude. Elevation data are stored in a database along with the water surface area to compute the volume fluctuations. Satellite water level time series were also produced and compared with the only nearby <i>in situ</i> gauging station. Although the “lake” retracker worked well with calm water, the presence of waves and other factors was such that the standard “ice1” retracker performed better on the overall. We estimate our water level accuracy to be around 75 cm. Although the return time of both satellites is only 35 days, the next few years promise to bring new altimetry satellite missions that will significantly increase this frequency.