
TOPIC MODELLING FOR OBJECT-BASED CLASSIFICATION OF VHR SATELLITE IMAGES BASED ON MULTISCALE SEGMENTATIONS
Author(s) -
Li Shen,
Linmei Wu,
Zhipeng Li
Publication year - 2016
Publication title -
the international archives of the photogrammetry, remote sensing and spatial information sciences/international archives of the photogrammetry, remote sensing and spatial information sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 71
eISSN - 1682-1777
pISSN - 1682-1750
DOI - 10.5194/isprsarchives-xli-b7-359-2016
Subject(s) - grayscale , artificial intelligence , computer science , object (grammar) , pattern recognition (psychology) , histogram , segmentation , class (philosophy) , similarity (geometry) , scale (ratio) , computer vision , image (mathematics) , image segmentation , geography , cartography
Multiscale segmentation is a key prerequisite step for object-based classification methods. However, it is often not possible to determine a sole optimal scale for the image to be classified because in many cases different geo-objects and even an identical geo-object may appear at different scales in one image. In this paper, an object-based classification method based on mutliscale segmentation results in the framework of topic modelling is proposed to classify VHR satellite images in an entirely unsupervised fashion. In the stage of topic modelling, grayscale histogram distributions for each geo-object class and each segment are learned in an unsupervised manner from multiscale segments. In the stage of classification, each segment is allocated a geo-object class label by the similarity comparison between the grayscale histogram distributions of each segment and each geo-object class. Experimental results show that the proposed method can perform better than the traditional methods based on topic modelling.