
INTEGRATION OF IMAGES AND LIDAR POINT CLOUDS FOR BUILDING FAÇADE TEXTURING
Author(s) -
Lin Chen,
L. L. Chan,
W. C. Chang
Publication year - 2016
Publication title -
the international archives of the photogrammetry, remote sensing and spatial information sciences/international archives of the photogrammetry, remote sensing and spatial information sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 71
eISSN - 1682-1777
pISSN - 1682-1750
DOI - 10.5194/isprsarchives-xli-b2-379-2016
Subject(s) - point cloud , computer vision , lidar , artificial intelligence , computer science , texture (cosmology) , selection (genetic algorithm) , point (geometry) , fidelity , remote sensing , image (mathematics) , mathematics , geography , geometry , telecommunications
This paper proposes a model-based method for texture mapping using close-range images and Lidar point clouds. Lidar point clouds are used to aid occlusion detection. For occluded areas, we compensate the occlusion by different view-angle images. Considering the authenticity of façade with repeated patterns under different illumination conditions, a selection of optimum pattern is suggested. In the selection, both geometric shape and texture are analyzed. The grey level co-occurrence matrix analysis is applied for the selection of the optimal façades texture to generate of photorealistic building models. Experimental results show that the proposed method provides high fidelity textures in the generation of photorealistic building models. It is demonstrated that the proposed method is also practical in the selection of the optimal texture.