
TSUNAMI LEAD WAVE RECONSTRUCTION BASED ON NOISY SEA SURFACE HEIGHT MEASUREMENTS
Author(s) -
Kegen Yu
Publication year - 2016
Publication title -
the international archives of the photogrammetry, remote sensing and spatial information sciences/international archives of the photogrammetry, remote sensing and spatial information sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 71
eISSN - 1682-1777
pISSN - 1682-1750
DOI - 10.5194/isprsarchives-xli-b1-525-2016
Subject(s) - gnss applications , mean squared error , wavelet , standard deviation , reflectometry , noise (video) , remote sensing , geology , thresholding , kalman filter , root mean square , computer science , filter (signal processing) , geodesy , algorithm , mathematics , global positioning system , artificial intelligence , telecommunications , physics , statistics , time domain , computer vision , quantum mechanics , image (mathematics)
This paper presents a Tsunami lead wave reconstruction method using noisy sea surface height (SSH) measurements such as observed by a satellite-carried GNSS reflectometry (GNSS-R) sensor. It is proposed to utilize wavelet theory to mitigate the strong noise in the GNSS-R based SSH measurements. Through extracting the noise components by high-pass filters at decomposition stage and shrinking the noise by thresholding prior to reconstruction, the noise is greatly reduced. Real Tsunami data based simulation results demonstrate that in presence of SSH measurement error of standard deviation 50 cm the accuracy in terms of root mean square error (RMSE) of the lead wave height (true value 145.5 cm) and wavelength (true value 592.0 km) estimation is 21.5 cm and 56.2 km, respectively. The results also show that the proposed wavelet based method considerably outperforms the Kalman filter based method on average. The results demonstrate that the proposed wave reconstruction approach has the potential for Tsunami detection and parameter estimation to assist in achieving reliable Tsunami warning.