
DEVELOPING THE STABILIZED MAPPING SYSTEM FOR THE GYROCOPTER – REPORT FROM THE FIRST TESTS
Author(s) -
J. Kolecki,
M. Prochaska,
Z. Kurczyński,
Paweł Piątek,
Jerzy Baranowski
Publication year - 2016
Publication title -
the international archives of the photogrammetry, remote sensing and spatial information sciences/international archives of the photogrammetry, remote sensing and spatial information sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 71
eISSN - 1682-1777
pISSN - 1682-1750
DOI - 10.5194/isprsarchives-xli-b1-31-2016
Subject(s) - lidar , point cloud , payload (computing) , computer science , photogrammetry , remote sensing , point (geometry) , laser scanning , real time computing , aerospace engineering , simulation , computer vision , engineering , laser , geography , computer security , physics , geometry , mathematics , network packet , optics
The LiDAR mapping carried out using gyrocopters provides a relatively cheap alternative for traditional mapping involving airplanes. The costs of the fuel and the overall maintenance are much lower when compared to planes. At the same time the flight kinematics of the gyrocopter makes it an ideal vehicle for corridor mapping. However a limited payload and a strongly limited space prevent using stabilized platforms dedicated for aerial photogrammetry. As the proper stabilization of the laser scanner during the flight is crucial in order to keep the desirable quality of the LiDAR data, it was decided to develop the prototype of the stabilized, ultra-light mapping platform that can meet the restricted requirements of the gyrocopter. The paper starts with the brief discussion of the legal and practical aspects of the LiDAR data quality, dealing mostly with the influence of the flight imperfections on the point pattern and point density. Afterwards the mapping system prototype is characterized, taking into account three main components: stabilized platform, sensors and control. Subsequently first in-flight tests are described. Though the data are still not perfect mostly due to vibrations, the stabilization provides a substantial improvement of their geometry, reducing both roll and pitch deflections.