
INTEGRATION OF A GENERALISED BUILDING MODEL INTO THE POSE ESTIMATION OF UAS IMAGES
Author(s) -
Jakob Unger,
Franz Rottensteiner,
Christian Heipke
Publication year - 2016
Publication title -
the international archives of the photogrammetry, remote sensing and spatial information sciences/international archives of the photogrammetry, remote sensing and spatial information sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 71
eISSN - 1682-1777
pISSN - 1682-1750
DOI - 10.5194/isprsarchives-xli-b1-1057-2016
Subject(s) - computer vision , artificial intelligence , bundle adjustment , computer science , orientation (vector space) , image (mathematics) , gauss , pose , vanishing point , building model , relation (database) , aerial image , mathematics , data mining , geometry , simulation , physics , quantum mechanics
A hybrid bundle adjustment is presented that allows for the integration of a generalised building model into the pose estimation of image sequences. These images are captured by an Unmanned Aerial System (UAS) equipped with a camera flying in between the buildings. The relation between the building model and the images is described by distances between the object coordinates of the tie points and building model planes. Relations are found by a simple 3D distance criterion and are modelled as fictitious observations in a Gauss-Markov adjustment. The coordinates of model vertices are part of the adjustment as directly observed unknowns which allows for changes in the model. Results of first experiments using a synthetic and a real image sequence demonstrate improvements of the image orientation in comparison to an adjustment without the building model, but also reveal limitations of the current state of the method