
REMOTELY-SENSED GLACIER CHANGE ESTIMATION: A CASE STUDY AT LINDBLAD COVE, ANTARCTIC PENINSULA
Author(s) -
Karolina D. Fieber,
J. P. Mills,
Pauline E. Miller,
Adrian J. Fox
Publication year - 2016
Publication title -
isprs annals of the photogrammetry, remote sensing and spatial information sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 38
eISSN - 2194-9042
pISSN - 2196-6346
DOI - 10.5194/isprsannals-iii-8-71-2016
Subject(s) - glacier , geology , cove , glacier mass balance , elevation (ballistics) , digital elevation model , physical geography , satellite imagery , glacier morphology , remote sensing , surge , aerial photography , geomorphology , arctic , oceanography , geography , geometry , mathematics , antarctic sea ice , arctic ice pack
This study builds on existing literature of glacier change estimation in polar regions and is a continuation of efforts aimed at unlocking the information encapsulated in archival aerial photography of Antarctic Peninsula glaciers. Historical aerial imagery acquired in 1957 over three marine-terminating glaciers at Lindblad Cove on the West Coast of Trinity Peninsula is processed to extract digital elevation models (DEMs) which are subsequently compared to DEMs generated from present day (2014) WorldView-2 satellite stereo-imagery. The new WorldView-2 images offer unprecedented sub-metre resolution of the Antarctic Peninsula and are explored here to facilitate improved registration and higher accuracy analysis of glacier changes. Unlike many studies, which focus on glacier fronts or only restricted regions of glaciers, this paper presents a complete coverage of elevation changes across the glacier surfaces for two of the studied glaciers. The study utilises a robust least squares matching technique to ensure precise registration of the archival and modern DEMs, which is applied due to lack of existing ground control in this remote region. This case study reveals that, while many glaciers in polar regions are reported as experiencing significant mass loss, some glaciers are stable or even demonstrate mass gain. All three glaciers reported here demonstrated overall mean increases in surface elevation, indicative of positive mass balance ranging from 0.6 to 5.8 metre water equivalent between 1957 and 2014.