
MAPPING URBAN TREE CANOPY COVER USING FUSED AIRBORNE LIDAR AND SATELLITE IMAGERY DATA
Author(s) -
Ebadat Ghanbari Parmehr,
Marco Amati,
Clive S. Fraser
Publication year - 2016
Publication title -
isprs annals of the photogrammetry, remote sensing and spatial information sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 38
eISSN - 2194-9042
pISSN - 2196-6346
DOI - 10.5194/isprsannals-iii-7-181-2016
Subject(s) - lidar , remote sensing , multispectral image , point cloud , normalized difference vegetation index , canopy , satellite imagery , tree canopy , tree (set theory) , environmental science , satellite , geography , computer science , climate change , geology , artificial intelligence , mathematics , mathematical analysis , oceanography , archaeology , aerospace engineering , engineering
Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.