
PANORAMA IMAGE SETS FOR TERRESTRIAL PHOTOGRAMMETRIC SURVEYS
Author(s) -
Livia Piermattei,
W. Karel,
A. Vettore,
N. Pfeifer
Publication year - 2016
Publication title -
isprs annals of the photogrammetry, remote sensing and spatial information sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 38
eISSN - 2194-9042
pISSN - 2196-6346
DOI - 10.5194/isprsannals-iii-5-159-2016
Subject(s) - photogrammetry , panorama , image stitching , computer vision , artificial intelligence , computer science , offset (computer science) , remote sensing , computer graphics (images) , geography , programming language
High resolution 3D models produced from photographs acquired with consumer-grade cameras are becoming increasingly common in the fields of geosciences. However, the quality of an image-based 3D model depends on the planning of the photogrammetric surveys. This means that the geometric configuration of the multi-view camera network and the control data have to be designed in accordance with the required accuracy, resolution and completeness. From a practical application point of view, a proper planning (of both photos and control data) of the photogrammetric survey especially for terrestrial acquisition, is not always ensured due to limited accessibility of the target object and the presence of occlusions. To solve these problems, we propose a different image acquisition strategy and we test different geo-referencing scenarios to deal with the practical issues of a terrestrial photogrammetric survey. The proposed photogrammetric survey procedure is based on the acquisition of a sequence of images in panorama mode by rotating the camera on a standard tripod. The offset of the pivot point from the projection center prevents the stitching of these images into a panorama. We demonstrate how to still take advantage of this capturing mode. The geo-referencing investigation consists of testing the use of directly observed coordinates of the camera positions, different ground control point (GCP) configurations, and GCPs with different accuracies, i.e. artificial targets vs. natural features. Images of the test field in a low-slope hill were acquired from the ground using an SLR camera. To validate the photogrammetric results a terrestrial laser scanner survey is used as benchmark.