z-logo
open-access-imgOpen Access
A GLOBAL SOLUTION TO TOPOLOGICAL RECONSTRUCTION OF BUILDING ROOF MODELS FROM AIRBORNE LIDAR POINT CLOUDS
Author(s) -
Jixing Yan,
Wanshou Jiang,
Jie Shan
Publication year - 2016
Publication title -
isprs annals of the photogrammetry, remote sensing and spatial information sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 38
eISSN - 2194-9042
pISSN - 2196-6346
DOI - 10.5194/isprsannals-iii-3-379-2016
Subject(s) - point cloud , roof , lidar , topology (electrical circuits) , computer science , cut , minimum bounding box , algorithm , geometry , mathematics , segmentation , computer vision , remote sensing , geography , image segmentation , combinatorics , image (mathematics) , archaeology
This paper presents a global solution to building roof topological reconstruction from LiDAR point clouds. Starting with segmented roof planes from building LiDAR points, a BSP (binary space partitioning) algorithm is used to partition the bounding box of the building into volumetric cells, whose geometric features and their topology are simultaneously determined. To resolve the inside/outside labelling problem of cells, a global energy function considering surface visibility and spatial regularization between adjacent cells is constructed and minimized via graph cuts. As a result, the cells are labelled as either inside or outside, where the planar surfaces between the inside and outside form the reconstructed building model. Two LiDAR data sets of Yangjiang (China) and Wuhan University (China) are used in the study. Experimental results show that the completeness of reconstructed roof planes is 87.5%. Comparing with existing data-driven approaches, the proposed approach is global. Roof faces and edges as well as their topology can be determined at one time via minimization of an energy function. Besides, this approach is robust to partial absence of roof planes and tends to reconstruct roof models with visibility-consistent surfaces.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom