z-logo
open-access-imgOpen Access
Vibrational and Raman spectroscopy provide further evidence in support of free OH groups and hydrogen bond strength underlying difference in two more drugs at ultra high dilutions
Author(s) -
Tandra Sarkar,
Atheni Konar,
Nirmal Chandra Sukul,
Achintya Singha,
Anirban Sukul
Publication year - 2021
Publication title -
international journal of high dilution research - issn 1982-6206
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.129
H-Index - 9
ISSN - 1982-6206
DOI - 10.51910/ijhdr.v15i3.826
Subject(s) - raman spectroscopy , chemistry , absorbance , fourier transform infrared spectroscopy , hydrogen bond , analytical chemistry (journal) , molecule , spectral line , dilution , nuclear magnetic resonance , chromatography , optics , organic chemistry , physics , astronomy , thermodynamics
Objective: To confirm that free water molecules and hydrogen bond strength of OH groups underlie difference between two homeopathic drugs at ultrahigh dilution (UHD). Method: FTIR and Laser Raman spectra of UHDs of X-ray and Magnetis Poli Ambo were obtained in the wave number regions of 2400-4000 cm-1 and 2400-4200 cm-1, respectively. Mother tincture (MT) were prepared by exposing ethanol water to X-radiation for X-ray and magnetic field for Magnetis. Spectra of the reference water and the three UHDs of Ethanol were also taken. All the samples were in water-ethanol solution in which the ethanol content was 25%. For FTIR the difference spectrum (absorbance of a UHD minus absorbance of reference water) was obtained after normalization of the spectrum at 3410 cm-1. For Raman spectra the intensity ratio at vibration frequencies between 3200 and 3420 cm-1 (R1), and that between 3620 and 3420 cm-1 (R2), were calculated for each UHD. The intensity at 3600 cm-1 in the difference spectra (FTIR) represents the number of free water molecules in UHDs. R2 values in Raman scattering suggest the same thing. Results: The data in both cases follow almost a similar pattern of difference among the UHDs studied here. For example, X-ray: FTIR 14

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom