z-logo
open-access-imgOpen Access
Mathematical Problems of Artificial Intelligence and Artificial Neural Networks
Author(s) -
В. Б. Бетелин,
В. А. Галкин
Publication year - 2021
Publication title -
uspehi kibernetiki
Language(s) - English
Resource type - Journals
ISSN - 2712-9942
DOI - 10.51790/2712-9942-2021-2-4-1
Subject(s) - artificial neural network , computer science , artificial intelligence , chebyshev filter , regularization (linguistics) , big data , hilbert space , interpolation (computer graphics) , mathematics , mathematical optimization , algorithm , data mining , motion (physics) , mathematical analysis , computer vision
Предложен общий топологический подход для анализа искусственных нейронных сетей на основе симплициальных комплексов и свойств аппроксимации непрерывных отображений их симплициальными приближениями. Выявлены существенные для этого класса задач явления вычислительной неустойчивости, связанной с общими проблемами некорректных задач в гильбертовом пространстве и методами их регуляризации, типичными для обработки Big Data. Сформулированы критерии точности и применимости моделей искусственных нейронных сетей, рассмотрены примеры их реализации на основе теории интерполяции функций. Развитие идей П.Л.Чебышёва о наилучшем приближении служит отправной точкой для широкого класса математических исследований по оптимизации обучающих наборов для построения ИНС. We propose a general topological approach to the analysis of artificial neural networks using simplicial complexes and the approximation of continuous mappings with simplicial ones. The essential properties of numerical instability in such problems were identified. It is associated with ill-posed problems in Hilbert space and regularization methods typically applied to Big Data processing. We formulated the criteria of artificial neural network accuracy and applicability and included some implementation examples based on the interpolation theory. Advancing P.L. Chebyshev’s ideas about the best approximation may be an entry point to various mathematical research on artificial neural network training dataset optimization. 

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here