
Some Mathematical Aspects of Constructing Artificial Neural Networks
Author(s) -
В. Б. Бетелин,
В. А. Галкин,
А. О. Дубовик
Publication year - 2021
Publication title -
uspehi kibernetiki
Language(s) - English
Resource type - Journals
ISSN - 2712-9942
DOI - 10.51790/2712-9942-2021-2-3-3
Subject(s) - artificial neural network , impossibility , computer science , interpolation (computer graphics) , field (mathematics) , function (biology) , artificial intelligence , point (geometry) , table (database) , theoretical computer science , algorithm , mathematics , data mining , pure mathematics , motion (physics) , geometry , evolutionary biology , political science , law , biology
Искусственные нейронные сети (ИНС) в настоящее время являются полем интенсивных исследований. Они зарекомендовали себя при решении задач распознавания образов, аудио и текстовой информации. Планируется их применение в медицине, в беспилотных автомобилях и летательных аппаратах. Однако крайне мало научных работ посвящено обсуждению возможности построения искусственного интеллекта (ИИ), способного эффективно решать очерченный круг задач. Отсутствует гарантия штатного функционирования ИИ в любой реальной, а не специально созданной ситуации.В данной работе предпринимается попытка обоснования ненадежности функционирования современных искусственных нейронных сетей. Показывается, что задача построения интерполяционных многочленов является прообразом проблем, возникающих при создании ИНС. Известны примеры К.Д.Т. Рунге, С.Н. Бернштейна и общая теорема Фабера о том, что для любого наперед заданного натурального числа, соответствующего количеству узлов в интерполяционной таблице, найдется точка из области интерполяции и непрерывная функция, что интерполяционный многочлен не сходится к значению функции в этой точке при неограниченном росте числа узлов. Отсюда следует невозможность обеспечения эффективной работы ИИ лишь за счет неограниченного роста числа нейронов и объемов данных (Big Data), используемых в качестве обучающих выборок. Artificial neural networks (ANN) are currently a field of intensive research. They are a proven pattern/audio/text recognition tool. ANNs will be used in medicine, autonomous vehicles, and drones. Still, very few works discuss building artificial intelligence (AI) that can effectively solve the mentioned problems. There is no guarantee that AI will operate properly in any reallife, not simulated situation.In this work, an attempt is made to prove the unreliability of modern artificial neural networks. It is shown that constructing interpolation polynomials is a prototype of the problems associated with the ANN generation. There are examples by C.D.T. Runge, S.N. Bernstein, and the general Faber theorem stating that for any predetermined natural number corresponding to the number of nodes in the lookup table there is a point from the interpolation region and a continuous function that the interpolation polynomial does not converge to the value of the function at this point as the number of nodes increases indefinitely. This means the impossibility of ensuring efficient AI operation only by an unlimited increase in the number of neurons and data volumes (Big Data) used as training datasets.