
MECHANICAL PROPERTIES AND WEAR BEHAVIOUR OF KAOLINITE CLAY PARTICLES REINFORCED EPOXY MATRIX COMPOSITES
Author(s) -
Oluyemi Ojo Daramola
Publication year - 2021
Publication title -
federal university of technology akure journal of engineering and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2636-6045
DOI - 10.51459/futajeet.2021.15.2.317
Subject(s) - materials science , composite material , epoxy , scanning electron microscope , ultimate tensile strength , flexural strength
Epoxy matrix composites reinforced with clay particles were developed by hand lay-up open mould casting technique. The clay used in this study was pulverized and processed into ultrafine particles through the sedimentation process. The composites were developed by blending the epoxy matrix and hardener with various weight fractions of the ultrafine clay particles (2, 4, 6, 8 and 10 wt%) in open test moulds. In order to accomplish a homogeneous blend of the constituents; manual mixing of the blend was carried out for 3 min. The test specimens were left to cure for 24 hours in the moulds and for additional 27 days at room temperature of 27 ± 2 °C and were thereafter detached from the moulds. The developed composites test specimens were subjected to mechanical tests (flexural, tensile and impact) in accordance with ASTM standards and performed at room temperature. Structural characteristics of the clay particles were determined with the aid of an X-ray diffractometer (XRD). The morphologies of the composites were determined using a scanning electron microscope (SEM). There was a progressive enhancement in the mechanical properties of epoxy composites containing 2-6 wt.% ultrafine clay particles while a drastic decrease in the mechanical properties was noticed in the epoxy/clay composites reinforced with 8-10 wt.% ultrafine clay particles. The SEM images revealed homogeneous particles distributions within the epoxy matrix at lower ultrafine clay particles weight fractions (2 wt. % and 6 wt.%).