z-logo
open-access-imgOpen Access
Cardinality Estimation of an SQL Query Using Recursive Neural Networks
Author(s) -
Davit Karamyan
Publication year - 2020
Publication title -
mathematical problems of computer science
Language(s) - English
Resource type - Journals
eISSN - 2738-2788
pISSN - 2579-2784
DOI - 10.51408/1963-0058
Subject(s) - computer science , cardinality (data modeling) , set (abstract data type) , query optimization , expression (computer science) , theoretical computer science , histogram , data mining , artificial intelligence , algorithm , programming language , image (mathematics)
To learn complex interactions between predicates and accurately estimate the cardinality of an SQL query, we develop a novel framework based on recursive tree-structured neural networks, which take into account the natural properties of logical expressions: compositionality and n-ary associativity. The proposed architecture is an extension of MSCN (multi-set convolutional network) for queries containing both conjunction and disjunction operators. The goal is to represent an arbitrary logical expression in a continuous vector space by combining sub-expression vectors according to the operator type. We compared the proposed approach with the histogram-based approach on the real-world dataset and showed that our approach significantly outperforms histograms with a large margin.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom