z-logo
open-access-imgOpen Access
Long Cycles in t-Tough Graphs with t > 1
Author(s) -
Zh. G. Nikoghosyan
Publication year - 2019
Publication title -
mathematical problems of computer science
Language(s) - English
Resource type - Journals
eISSN - 2738-2788
pISSN - 2579-2784
DOI - 10.51408/1963-0032
Subject(s) - combinatorics , graph , mathematics , degree (music) , pancyclic graph , discrete mathematics , physics , 1 planar graph , line graph , acoustics
It is proved that if G is a t-tough graph of order n and minimum degree δ with t > 1, then either G has a cycle of length at least min{n, 2δ + 4} or G is the Petersen graphIt is proved that if G is a t-tough graph of order n and minimum degree δ with t > 1, then either G has a cycle of length at least min{n, 2δ + 4} or G is the Petersen graph

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom