z-logo
open-access-imgOpen Access
On the Manoussakis Conjecture for a Digraph to be Hamiltonian
Author(s) -
Samvel Kh. Darbinyan
Publication year - 2019
Publication title -
mathematical problems of computer science
Language(s) - English
Resource type - Journals
eISSN - 2738-2788
pISSN - 2579-2784
DOI - 10.51408/1963-0031
Subject(s) - conjecture , combinatorics , digraph , hamiltonian (control theory) , mathematics , hamiltonian path , graph , order (exchange) , discrete mathematics , physics , mathematical optimization , finance , economics
Manoussakis (J. Graph Theory 16, 1992, 51-59) proposed the following conjecture. Conjecture. Let D be a 2-strongly connected digraph of order n such that for all distinct pairs of non-adjacent vertices x, y and w, z, we have d(x)+d(y)+d(w)+d(z) ≥ 4n − 3. Then D is Hamiltonian. In this note, we prove that if D satisfies the conditions of this conjecture, then (i) D has a cycle factor; (ii) If {x, y} is a pair of non-adjacent vertices of D such that d(x) + d(y) ≤ 2n − 2, then D is Hamiltonian if and only if D contains a cycle passing through x and y; (iii) If {x, y} a pair of non-adjacent vertices of D such that d(x)+d(y) ≤ 2n−4, then D contains cycles of all lengths 3, 4, . . . , n−1; (iv) D contains a cycle of length at least n − 1

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom