z-logo
open-access-imgOpen Access
A Sharp Improvement of a Theorem of Bauer and Schmeichel
Author(s) -
Zh. G. Nikoghosyan
Publication year - 2018
Publication title -
mathematical problems of computer science
Language(s) - English
Resource type - Journals
eISSN - 2738-2788
pISSN - 2579-2784
DOI - 10.51408/1963-0017
Subject(s) - combinatorics , mathematics , graph , upper and lower bounds , circumference , geometry , mathematical analysis
Let G be a graph on n vertices with minimum degree δ. The earliest nontrivial lower bound for the circumference c (the length of a longest cycle in G) was established in 1952 due to Dirac in terms of n and δ: (i) if G is a 2-connected graph, then c ≥ min{n, 2δ}. The bound in Theorem (i) is sharp. In 1986, Bauer and Schmeichel gave a version of this classical result for 1-tough graphs: (ii) if G is a 1-tough graph, then c ≥ min{n, 2δ + 2}. In this paper we present an improvement of (ii), which is sharp for each n: (iii) if G is a 1-tough graph, then c ≥ min{n, 2δ + 2} when n ≡ 1(mod 3); c ≥ min{n, 2δ + 3} when n ≡ 2(mod 3) or n ≡ 1(mod 4); and c ≥ min{n, 2δ + 4} otherwise.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom