Open Access
BLACKFACE SURVEILLANCE CAMERA DATABASE FOR EVALUATING FACE RECOGNITION IN LOW QUALITY SCENARIOS
Author(s) -
Adebayo AbayomiAlli,
E. O. Omidiora,
Stephen O. Olabiyisi,
John Adedapo Ojo,
A Y Akingboye
Publication year - 2017
Publication title -
journal of natural sciences, engineering and technology/journal of natural science, engineering and technology
Language(s) - English
Resource type - Journals
eISSN - 2315-7461
pISSN - 2277-0593
DOI - 10.51406/jnset.v15i2.1668
Subject(s) - artificial intelligence , principal component analysis , linear discriminant analysis , computer science , computer vision , facial recognition system , pattern recognition (psychology) , face (sociological concept) , social science , sociology
Many face recognition algorithms perform poorly in real life surveillance scenarios because they were tested with datasets that are already biased with high quality images and certain ethnic or racial types. In this paper a black face surveillance camera (BFSC) database was described, which was collected from four low quality cameras and a professional camera. There were fifty (50) random volunteers and 2,850 images were collected for the frontal mugshot, surveillance (visible light), surveillance (IR night vision), and pose variations datasets, respectively. Images were taken at distance 3.4, 2.4, and 1.4 metres from the camera, while the pose variation images were taken at nine distinct pose angles with an increment of 22.5 degrees to the left and right of the subject. Three Face Recognition Algorithms (FRA), a commercially available Luxand SDK, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were evaluated for performance comparison in low quality scenarios. Results obtained show that camera quality (resolution), face-to-camera distance, average recognition time, lighting conditions and pose variations all affect the performance of FRAs. Luxand SDK, PCA and LDA returned an overall accuracy of 97.5%, 93.8% and 92.9% after categorizing the BFSC images into excellent, good and acceptable quality scales.