
Clustering Fasilitas Kesehatan Berdasarkan Kecamatan Di Karawang Dengan Algoritma K-Means
Author(s) -
Bagus Muhammad Islami,
Cepy Sukmayadi,
Tesa Nur Padilah
Publication year - 2021
Publication title -
bina insani ict journal/bina insani ict journal
Language(s) - English
Resource type - Journals
eISSN - 2527-9777
pISSN - 2355-3421
DOI - 10.51211/biict.v8i1.1488
Subject(s) - cluster (spacecraft) , humanities , microsoft excel , physics , geography , art , computer science , programming language , operating system
Abstrak: Masalah kesehatan yang ada di dalam masyarakat terutama di negara- negara berkembang seperti Indonesia dipengaruhi oleh dua faktor yaitu aspek fisik dan aspek non fisik. Berdasarkan data yang diperoleh dari karawangkab.bps.go.id data dibagi menjadi 3 cluster yaitu sedikit, sedang dan terbanyak. Algoritma yang digunakan adalah K-Means cluster yang diimplementsikan menggunakan Microsoft Excel dan Rapidminer Studio. Hasil pengolahan data fasilitas kesehatan di karawang menghasilkan 3 cluster dengan cluster 1 yang mempunyai fasilitas kesehatan sedikit sebanyak 23 kecamatan, cluster 2 yang mempunyai fasilitas kesehatan sedang sebanyak 5 kecamatan dan cluster 3 yang mempunyai fasilitas kesehatan terbanyak terdapat 2 kecamatan. Kinerja yang dihasilkan dari algoritma K-means menghasilkan nilai Davies Boildin Index sebesar 0,109.
Kata kunci: clustering, data mining, fasilitas kesehatan, K-Means.
Abstract: Health problems that exist in society, especially in developing countries like Indonesia, are built by two factors, namely physical and non-physical aspects. Based on data obtained from karawangkab.bps.go.id the data is divided into 3 clusters, namely the least, medium and the most. The algorithm used is the K-Means cluster which is implemented using Microsoft Excel and Rapidminer Studio. The results of data processing of health facilities in Karawang produce 3 clusters with cluster 1 which has 23 sub-districts of health facilities, cluster 2 which has medium health facilities as many as 5 districts and cluster 3 which has the most health facilities in 2 districts. The performance resulting from the K-means algorithm results in a Davies Boildin Index value of 0.109.
Keywords: clustering, data mining, health facilities, K-Means.