z-logo
open-access-imgOpen Access
The Case for Error-Bounded Lossy Floating-Point Data Compression on Interconnection Networks
Author(s) -
Yao Hu,
Michihiro Koibuchi
Publication year - 2021
Language(s) - English
Resource type - Conference proceedings
DOI - 10.5121/csit.2021.110706
Subject(s) - lossy compression , computer science , lossless compression , compression ratio , interconnection , fast fourier transform , data compression , parallel computing , infiniband , data compression ratio , algorithm , image compression , computer network , artificial intelligence , image processing , automotive engineering , engineering , image (mathematics) , internal combustion engine
Data compression virtually increases the effective network bandwidth on an interconnection network of parallel computers. Although a floating-point dataset is frequently exchanged between compute nodes in parallel applications, its compression ratio often becomes low when using simple lossless compression algorithms. In this study, we aggressively introduce a lossy compression algorithm for floating-point values on interconnection networks. We take an application-level compression for providing high portability: a source process compresses communication datasets at an MPI parallel program, and a destination process decompresses them. Since recent interconnection networks are latency-sensitive, sophisticated lossy compression techniques that introduce large compression overhead are not suitable for compressing communication data. In this context, we apply a linear predictor with the userdefined error bound to the compression of communication datasets. We design, implement, and evaluate the compression technique for the floating-point communication datasets generated in MPI parallel programs, i.e., Ping Pong, Himeno, K-means Clustering, and Fast Fourier Transform (FFT). The proposed compression technique achieves 2.4x, 6.6x, 4.3x and 2.7x compression ratio for Ping Pong, Himeno, K-means and FFT at the cost of the moderate decrease of quality of results (error bound is 10-4 ), thus achieving 2.1x, 1.7x, 2.0x and 2.4x speedup of the execution time, respectively. More generally, our cycle-accurate network simulation shows that a high compression ratio provides comparably low communication latency, and significantly improves effective network throughput on typical synthetic traffic patterns when compared to no data compression on a conventional interconnection network.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom