
Automatic Approach for Detecting the Seizure Using RCCN Architecture
Author(s) -
Dinesh Kumar,
Nanda K. Viswanathan
Publication year - 2021
Publication title -
international journal of advanced research in science, communication and technology
Language(s) - English
Resource type - Journals
ISSN - 2581-9429
DOI - 10.48175/ijarsct-2323
Subject(s) - ictal , epilepsy , electroencephalography , computer science , artificial intelligence , epileptic seizure , classifier (uml) , machine learning , pattern recognition (psychology) , psychology , neuroscience
Seizure is one of the most common neurodegenerative illnesses in humans, and it can result in serious brain damage, strokes, and tumors. Seizures can be detected early, which can assist prevent harm and aid in the treatment of epilepsy sufferers. A seizure prediction system's goal is to correctly detect the pre-ictal brain state, which occurs before a seizure occurs. Patient-independent seizure prediction models have been recognized as a real-world solution to the seizure prediction problem, since they are designed to provide accurate performance across different patients by using the recorded dataset. Furthermore, building such models to adjust to the significant inter-subject variability in EEG data has received little attention. We present a patient-independent deep learning architectures that can train a global function using data from numerous people with its own learning strategy. On the CHB- MIT-EEG dataset, the proposed models reach state-of-the-art accuracy for seizure prediction, with 95.54 percent accuracy. While predicting seizures, the Siamese model trained on the suggested learning technique is able to understand patterns associated to patient differences in data. Our models outperform the competition in terms of patient-independent seizure prediction, and following model adaption, the same architecture may be employed as a patient-specific classifier. We show that the MFCC feature map used by our models contains predictive biomarkers associated to inter-ictal and pre-ictal brain states, and we are the first study to use model interpretation to explain classifier behaviour for the task of seizure prediction.