
Design of A Micro Hydro Power Plant Based on The Vortex Flow of Water
Author(s) -
Adarsh Gupta,
Anand Prakash,
Girish Kumar Singh,
Harshit Tripathi
Publication year - 2021
Publication title -
international journal of advanced research in science, communication and technology
Language(s) - English
Resource type - Journals
ISSN - 2581-9429
DOI - 10.48175/ijarsct-1149
Subject(s) - vortex , computational fluid dynamics , mechanics , turbine , turbulence , water turbine , draft tube , vortex stretching , marine engineering , physics , geology , environmental science , mechanical engineering , engineering , vortex ring
This research focuses on the gravitational creation of a water vortex stream, which is a novel technique in hydropower engineering. The water enters a wide straight inlet and then through a vertical conical tube, creating a vortex that exits at the shallow basin's centre floor. The blades of the turbine can spin in the vortex, which generates electricity from a generator. The gravitational vortex turbine is the name for this kind of turbine. The turbine is driven by the vortex's dynamic force rather than the pressure differential. Since no discretization of the flow domain is needed, this study relies on simulation to provide the specifics of water vortex creation. The computational fluid dynamics (CFD) models' boundary conditions are added depending on the experiment configuration. Two different hole sizes for water discharge were tested in two different environments. The first condition's effect shows that the vortex heights in the experiment and CFD agree. The final vortex height of the CFD model differs from the experiment outcome in the second condition. More turbulent flow has set in as the discharge hole becomes larger, creating more errors in the CFD model's prediction of water vortex formation.