z-logo
open-access-imgOpen Access
Accuracy assessment for Landsat 8 thermal bands in measuring sea surface temperature over Kuwait and North West Arabian Gulf
Author(s) -
Jasem A Albanai
Publication year - 2021
Publication title -
maǧallaẗ al-kuwayt li-l-ʿulūm
Language(s) - English
Resource type - Journals
eISSN - 2307-4116
pISSN - 2307-4108
DOI - 10.48129/kjs.v49i1.9549
Subject(s) - remote sensing , brightness temperature , mean squared error , sea surface temperature , contour line , thermal , environmental science , geology , brightness , meteorology , geodesy , climatology , geography , physics , statistics , mathematics , optics
Studying physical oceanography is one of the important fields of remote sensing applications. Previously, the thermal mapping of seas and oceans relied on primitive methods, such as the use of sensors installed on buoys, extracting contour lines, and deriving the values from the confluence of contour lines. Today's remote sensing provides more advanced methods for extracting sea surface temperature (SST) values for all bodies of water as a continuous raster model, through thermal sensors installed on satellites designated to monitor and observe the Earth. The Landsat program has facilitated a quantum leap by providing its data free for the public. What has become increasingly important is the inclusion, in Landsat 8, of a thermal band on the TIRS sensor through which SST can be extracted with a spatial resolution of 100 m2. In this article, the accuracy of the two thermal bands (band 10 and 11) of Landsat 8 was validated in estimating the SST of Kuwaiti and Northwest Arabian Gulf waters, through the use of 62 thermal images and 66 ground-truthing points (GTPs) taken from the field in the period from July 2013 to March 2020. This was achieved through a function provided by the ENVI 5.3 software - “brightness temperature” - to derive the surface temperature. The accuracy of Landsat 8 to monitor the SST of Kuwait and north-west Arabian Gulf waters was validated by calculating the root mean square error (RMSE) and the mean absolute percentage error (MAPE). The accuracy of the thermal band 10 was ± 2.03 degrees (7.9%), while the accuracy of the thermal band 11 was ± 3.13 degrees (13.7%). Therefore, this study demonstrated that the thermal band 10 of Landsat 8 is more accurate than the thermal band 11 in monitoring the SST of Kuwaiti and north-west Arabian Gulf waters, with a difference of ± 1.1 degrees (5.8%).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here